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Dependence Structure of Random Wavelet
Coefficients in Terms of Cumulants

Philippe Naveau, Peter Brockwell, and Doug Nychka

Abstract. When the Gaussian assumption for a times series no longer
holds, second order moment properties such as the covariance and the
spectrum are not necessarily sufficient to describe the dependence struc-
ture. Although wavelet models have been proposed to de-correlate the
signal, this strategy must be reexamined when applied to non-Gaussian
processes. The process of interest is a continuous parameter, mean-squared
continuous real-valued process that is not necessarily Gaussian or linear.
To study the departures from linearity and Gaussianity, we consider joint
cumulants, which are linear combinations of higher order moments, and
their associated spectra. A specific objective is to obtain new expressions
for cumulants of the random discrete wavelet coefficients instead of the
second order moments, and to study their higher order polyspectra. Con-
ditions on the polyspectrum to give null wavelet cumulants within and
across wavelet coefficient levels are derived. Expressions of the original
cumulants as a function of the wavelets cumulants are also given.

§1. Introduction

The covariance and spectral properties of the discrete wavelet coefficients for
random continuous real-valued processes have been extensively studied in
the past. Among others, Donoho et al. [4], Flandrin [6], Mallat et al. [13],
Masry [14], and Walter [17] have investigated the correlation within and
across wavelet coefficients. Focusing exclusively on the second order prop-
erties of wavelet coefficients for a Gaussian process is a reasonable task since
the dependence structure of Gaussian processes is entirely characterized by
the covariance. When the normality assumption no longer holds, higher order
cumulants are necessary.

Exploring some of the links that exist between wavelets and cumulants
is fairly new. Brillinger [1] studied a non-parametric regression problem with
cumulants and wavelets. In geophysics and astrophysics, Lazear [11] and
Ferreira et al. [5] applied wavelets and cumulants to seismic data sets and
to the Cosmic Microwave Background problem. The dependence structure
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between wavelet packets and in particular wavelet coefficients has also been
studied by D. Leporini and J.C. Pesquet [12]. In this paper, we derive new and
general results about the dependence structure of random wavelet coefficients
via its cumulants.

The process of interest X(t), indexed by the real parameter t, is supposed
to be a continuous real-valued process that is mean-square continuous, and
such that moments of some order 1 > 2 exist, i.e.,

sup EIX(t)[l < oo and lim EJX(t + h) - X(t)12 = 0. (1)
t h-0

§2. Cumulant Definition and Properties

If some useful information of the signal is not contained in the second-order
covariances (and the second order spectra), then one can still calculate some
meaningful linear combination of higher order moments, called cumulants.
Some early work on higher order cumulants and their Fourier transform was
proposed by Hasselman et al. [8] for investigating nonlinear interaction of
ocean waves, and Godfrey [7] used it for the analysis of economic time se-
ries. Rosenblatt with Lii and Van Atta in a series of papers have described
how higher cumulants could be used to study nonlinear transfer of energy in
turbulence.

The mth joint cumulant of the set of random variables {X(tl), ... , X(tm)},
denoted by CUM(X(ti), ... , X(tm)), with m < 1, is given by

CUM(X(t), .. ,x (tm)) = Z )P(p - 1)! (E J X(tr)) ... (E I1 Xz(t,)),
rEv_ rEvp

where the summation extends over all partitions {v 1 , ..., Vp} of {1, ... , m} with
p = 1,...,m. From this definition, we can notice that the information con-
tained in the first m cumulants is exactly the same as that contained in the
first m moments. However, cumulants have some advantages over moments.
For example, cumulants have useful linear properties,

CUM(Z + X(ti),..., X(tm)) = CUM(Z,..., X(tm)) + CUM(X(ti),..., X(tm)),

CUM(aX(ti), ..., X(tm)) = aCUM(X(ti), ... , X(tm)),

for any real a. Another important property of cumulants concerns the depen-
dence structure of the process: if some subset of {X(t 1 ), ... ,X(tm)} is inde-
pendent of the remainder, then CUM(X(t1 ), ..., X(tm)) is identically equal to
zero. Hence, the cumulant, CUM(X(t1 ),...,X(tm)) can be interpreted as a
measure of dependence of {X(tl), ... , X(tm)}. For the special case of Gaussian
processes, cumulants of order higher than two are zero.

In the remainder of this section, we suppose that the process {X(t)} is
stationary up to order 1, i.e.,

E(X(to)X(tl)...X(t1 )) = E(X(to + h)X(tI + h)...X(t1 + h)), Vh.
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Stationarity as just defined is frequently referred to in the literature as weak
stationarity. For us however the term stationarity, without further qualifica-
tion, will always refer to the above equality.

Under stationarity, CUM(X(t), X(t + si), ... , x(t + Sm-i)) does not de-
pend on t, and can be denoted by -ym(sl, ... , sin-). With these notations, the
second order cumulant -yl(u) is just the covariance function. The third order
cumulant y2(u, v) is the same as the third-order central moment,

E((X(t) - t)(X(t + u) - p)(X(t + v) - I)),

where 1L is the mean value of the process.
From the covariance function, one may define the power spectrum, i.e.,

the Fourier transform of yi(t), fi(w) = f yi(t)exp(-iwt)dt. A natural exten-
sion is the mth-order polyspectrum defined by

rn-I

j=l

assuming that the above Fourier transforms exist. An important property of
the polyspectra is that all polyspectra of higher order than second order vanish
when {X(t)} is a Gaussian process. Another characteristic of the polyspectra
is that the ratio Ifh(Wl, L2)1'

f1(wl)fl(W2)fdWi + W2)

is constant whenever the process {X(t)} is linear. Hence, the simplest higher
order spectrum, called bispectrum, can be regarded as deviation measures from
Gaussianity and linearity. Different statistical tests have been derived from it
(see Subbua Rao and Gabr [9] and Hinich [16]).

§3. Random Wavelet Coefficients

Consider a discrete orthonormal wavelet decomposition of a stochastic process
{X(t)} that satisfies condition (1). The corresponding wavelet coefficients

Wj,k = I X(t)Oj,k(t)dt (2)

are random variables. Here the equality sign is to be understood in the mean-
square sense, and Oj,k(t) = 2j/ 2

0 (2it - k) is an orthonormal wavelet basis
function with the mother wavelet V). A rigorous framework concerning the
construction for wavelet orthonormal basis can be found in Meyer [15] and
Daubechies [3]. There exist many candidates for the mother wavelet. The
simplest example of an orthonormal wavelet basis is provided by the Haar
system for which

o1, if0 < x < 0.5,

OW )= -1, if 0.5 <x< 1,

0, otherwise.
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Our main interest is to understand the dependence structure between the
different wavelet coefficients defined by (2).

In this article, we will either use the Haar system as a simple example
of compactly support wavelets, or a particular type of band-limited wavelets
called Meyer-type wavelets (see Walter [17], Zayed and Walter [18]). Having
a compact support in the frequency domain can facilitate the computation of
wavelet cumulants. These Meyer-type wavelets have some additional attrac-
tive features, such as being highly smooth (they can be made Co) and having
fast decay in the time domain. They are introduced as follows.

Let F be any probability measure supported on [-P, c] for some c < 7r/3.
Then the mother wavelet 0(.) is defined by its Fourier transform

-O(w) = exp(-iw/2)[] dF]1 /2. (3)

From this definition, it is possible to check that the orthogonality and dila-
tion conditions are satisfied for the wavelet basis generated from this mother
wavelet. There is a large class of distributions that can be chosen in equality
(3), and the edges of the support, [-c, c], can be made highly smooth.

§4. Dependence Structure

The dependence structure between wavelet coefficients is closely related to the
dependence inside the original signal. Hence, our first problem is to explain
how to obtain the joint cumulants of the wavelet coefficients from the joint
cumulants of the process. The first proposition takes care of this problem.

Because of space limitations, the proof of our propositions will not be in-
cluded in this paper. However, complete details of the proofs can be requested
from the authors.

Proposition 1. Let {X(t)} be a stochastic process that satisfies condition
(1). Suppose that the joint cumulants of order m < 1 of {X(t)} exist. Then

m

CUM(Wj~k . ... Wjmk-) f CUM(X(ti),...,X(tm)) [i /jn,~k(tn)dtn.

n=1

Proposition 1 is directly applicable to compactly supported wavelets,
since the product

mfl 'Pj ký (t.)

is null except at the intersection of the translated and dilated supports. For
example, suppose that the wavelet basis corresponds to the Haar system. The
expression of cumulants of the wavelet coefficients becomes

2m

CUM(Wj~k,,..., Wi-k-) = E(--1)12j'/21A CUM(X(ti),...,X(tm))dtn. (4)
1l=1
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The Al are rectangular boxes defined by the tensor product

Al = )In,c,

where the vectors El = (cl,5, ... , cmI) represent the set of all 2m possible con-
figurations of {0, 1/2}1, and the interval In,,,, is defined by

Ic., = {tn : 2-in(kn + cni) •_ tm < 2-j"(k, + cnL + 1/2), for n 1, ..,m}.

In order to apply (4) to a more specific example, we suppose that the process
{X(t)} is a zero-mean stationary process with standard deviation a and covari-
ance yj1(h) = bexp(-alhl), and -y1(hi, h 2) = cexp(-alh, + h 21), where a, b, c
are constants that depends on the second and third moment and other param-
eters describing the original process. Processes with such a cumulant function
correspond to Continuous Auto-Regressive processes (CAR) (see Brockwell
[2]) or equivalently solutions of particular stochastic differential equations with
non-necessarly Gaussian noise. After some algebra, wavelet cumulants sim-
plify to

CUM(Wjk 1 ,WJ 2k2)- bKaa(iiki)[ E Hj,(ula)Hj2(u2a)],
(u,,u

2 )E{-1,1} 2

for 2-i2(k 2 + 1) < 2-ilk1 and

CUM(Wjlkl;, Wj 2 k2 , Wj3 k3 ) = cK 2 ((ji, ki)

2a 3 Ka(j 2 , k2 )Ka(j 3 , k 3 )

x [ E Hjj(uia)Hj2 (u2 a)Hj3 (u3 a)]
(Ul,U 2 ,u3)E{-1,1}

3

for 2-h (k 3 + 1) < min(2-iiki, 2-j2k 2 ) with Ka(j, k) = exp(a(2-i(k + 0.5)))
and Hi(a) = 1 - exp(a2-i-1). The previous formulas can be easily extended
to higher dimensions, and can be used to derive asymptotic behavior, e.g

jil - j21 Too and so on.
Another possible application of Proposition 1 is to non-stationary pro-

cesses. A large variety of models, such as the bilinear model, autoregressive
models with random coefficients, and the threshold model, have been pro-
posed to take into account of the non-stationarity. To illustrate the use of
cumulants, we restrict attention to piecewise stationary processes, i.e. a sum
of independent stationary processes:

r {1, if tEA

X(t) = EZ.(Ui •_ t < ui+i)X( (t), where 1(A) = otherwise,
1=1 

0,ohrie

and X(M(t) are independent stationary processes and the change-points are
equal to -oc = u0 < Ul < ... < ur < Ur+1 = cc. Because of linear properties
of the cumulants, we have immediately that

r m
CUM(X(ti), ... ,X(tm)) = E I IT(u1 •_ tn < u1+0)CUM(X(O(t)),

1=1 n=1
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where CUM(X(l)(t)) = CUM(X)(t), ...,X(')(tm)). Using Proposition 1, it
follows that

r m

CUM(W--) = E CUM(X(,1 (t)) ( I(ul < t. < uI+l)0j,,k (t,)dtn
1=1 tn=1

with CUM(Wjk) CUM(Wjkl, ..., Wj-k). The above expression shows
that wavelet cumulants for piecewise stationary processes can be easily com-
puted for compactly supported wavelets such as the Haar system, and when
each process X(1 ) has simple cumulant functions (e.g. the CARMA process).

From the CAR example, we saw that wavelet cumulants are computable
for the Haar system, but the resulting formula are not so easy to manipu-
late. Another approach is to use band-limited wavelets. Simpler expression
of the wavelet cumulants can be derived. To illustrate this point, we look
at the Meyer-type wavelet in the next proposition. In this case, the Meyer-
type wavelet gives null or small wavelet cumulants within and across wavelet
coefficient levels under simple conditions.

Proposition 2. Let {X(t)} be a stationary process that satisfies condition
(1). Suppose that its Mth-order polyspectrum f m is well defined, and the
orthonormal basis {1jk} is generated by a mother Meyer-type wavelet. If
there exists some integer j* in {ix,...,jn} such that -j,,J" 2' < 2j*- 2, then

CUM(Wjiki, ... , Wjmkm) = 0. In addition, if frm(w) and ab(w) are both in CP,
then the cumulant at a fixed resolution level satisfies

CUM(Wjk1, ..., iWjikm) = O(max f Ik, - k,1-P).
s~r

Proposition 2 shows that the Meyer-type wavelet transform not only can
remove the correlation inside the original signal, but in addition the higher-
order cumulants are either null at distant scales or very small at a fixed scale.
Walter's result [17] for the covariance is a special case of Proposition 2:

Sf0, for jil-j21 >1,

O([kl - k2j-P), for jl j2.

It is interesting to note that the results stated in Proposition 2 hold for any
choice of F in the definition of the Meyer-type wavelet. An open problem
is to determine if there exist some distributions F which will significantly
reduce cumulants between wavelet coefficients. In this direction, Zayed and
Walter [18] minimized the covariance between wavelet coefficients by using a
bi-orthonormal wavelet basis that is a function of the original covariance.

In Propositions 1 and 2, different expressions of the wavelet cumulants
were derived. A natural question is whether or not the cumulants of the
original process can be expressed in terms of CUM(Wjk, ..., Wj-k). Thus,
our next result is the converse of Proposition 1.
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Proposition 3. Suppose that {Wjk} is a sequence of variables with all finite
moments. If the process

00 00

X(t) - E Z Wjk•bjk(t)
j=-oo k=-oo

is well defined (in the mean-square sense), then we have

00 00 m

CUM(X(ti),..,X(tm)) = ... E 1I bjý k. (tf )CUM(Wjk)
ji,ki=-oo jm,km=-oon=1

§5. Conclusion and Future Work

In this paper, different relationships between wavelets and cumulants have
been presented. Results show that the wavelet transform is not only a good
tool to de-correlate a Gaussian process, but it also gives small higher-order
cumulants of a non-Gaussian signal. The Meyer-type wavelet is particularly
well-adapted for stationary processes since they give null wavelet cumulants
at distant scales.

The combination of wavelets and cumulants has not yet been fully ex-
ploited. The statistical study of estimators of the bispectrum based on
wavelets is of particular interest for application with real data sets. Also in-
vestigating the properties of non-linear and non-stationary times series models
using bi-spectral methods and a wavelet decomposition approach needs further
research.
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